Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genesis ; 61(6): e23542, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37888861

RESUMO

Stem cells are units of biological organization, responsible for tissue and organ development and regeneration. I study stem cell biology, aging, and the evolution of immunity using the colonial chordate Botryllus schlosseri as a model system. This organism is uniquely suited for this study because it is closely related to vertebrates, undergoes weekly cycles of stem cell mediated regeneration, is long lived and has a recognition system and robust immune system. I have led the Botryllus genome project and developed a novel method to obtain a synthetic long read sequence, identified Botryllus stem cells and stem cell niches, isolated the gene that controls self/non self-recognition and characterized its immune system on the cellular and molecular levels. Recently, I led the Botryllus atlas project to characterize the two developmental pathways, embryogenesis (sexual) and blastogenesis (asexual), revealing the unique molecular landscapes for each developmental mode and investigated the molecular clock and neurodegeneration pathways in young and old colonies and investigated the molecular clock and neurodegeneration pathways in young and old colonies. These results and the resources we developed are used by my lab and others to further study stem cell and immune cell properties during development, regeneration, transplantation, and aging.


Assuntos
Cordados , Urocordados , Animais , Quimerismo , Urocordados/genética , Urocordados/metabolismo , Envelhecimento/genética , Células-Tronco
2.
Cells ; 12(7)2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-37048113

RESUMO

Human neuronal loss occurs through different cellular mechanisms, mainly studied in vitro. Here, we characterized neuronal death in B. schlosseri, a marine colonial tunicate that shares substantial genomic homology with mammals and has a life history in which controlled neurodegeneration happens simultaneously in the brains of adult zooids during a cyclical phase named takeover. Using an ultrastructural and transcriptomic approach, we described neuronal death forms in adult zooids before and during the takeover phase while comparing adult zooids in takeover with their buds where brains are refining their structure. At takeover, we found in neurons clear morphologic signs of apoptosis (i.e., chromatin condensation, lobed nuclei), necrosis (swollen cytoplasm) and autophagy (autophagosomes, autolysosomes and degradative multilamellar bodies). These results were confirmed by transcriptomic analyses that highlighted the specific genes involved in these cell death pathways. Moreover, the presence of tubulovesicular structures in the brain medulla alongside the over-expression of prion disease genes in late cycle suggested a cell-to-cell, prion-like propagation recalling the conformational disorders typical of some human neurodegenerative diseases. We suggest that improved understanding of how neuronal alterations are regulated in the repeated degeneration-regeneration program of B. schlosseri may yield mechanistic insights relevant to the study of human neurodegenerative diseases.


Assuntos
Cordados , Doenças Neurodegenerativas , Urocordados , Animais , Humanos , Morte Celular , Apoptose/genética , Urocordados/genética , Doenças Neurodegenerativas/genética , Mamíferos
3.
Cells ; 11(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36496987

RESUMO

Understanding how neurons regenerate following injury remains a central challenge in regenerative medicine. Adult mammals have a very limited ability to regenerate new neurons in the central nervous system (CNS). In contrast, the basal chordate Polycarpa mytiligera can regenerate its entire CNS within seven days of complete removal. Transcriptome sequencing, cellular labeling, and proliferation in vivo essays revealed that CNS regeneration is mediated by a newly formed neural progeny and the activation of neurodevelopmental pathways that are associated with enhanced stem-cell activity. Analyzing the expression of 239 activated pathways enabled a quantitative understanding of gene-set enrichment patterns at key regeneration stages. The molecular and cellular mechanisms controlling the regenerative ability that this study reveals can be used to develop innovative approaches to enhancing neurogenesis in closely-related chordate species, including humans.


Assuntos
Regeneração do Cérebro , Cordados , Animais , Humanos , Neurogênese/fisiologia , Sistema Nervoso Central/metabolismo , Encéfalo , Mamíferos
4.
J Exp Biol ; 225(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36314197

RESUMO

We studied the function, development and aging of the adult nervous system in the colonial tunicate Botryllus schlosseri. Adults, termed zooids, are filter-feeding individuals. Sister zooids group together to form modules, and modules, in turn, are linked by a shared vascular network to form a well-integrated colony. Zooids undergo a weekly cycle of regression and renewal during which mature zooids are replaced by developing buds. The zooid brain matures and degenerates on this 7-day cycle. We used focal extracellular recording and video imaging to explore brain activity in the context of development and degeneration and to examine the contributions of the nervous system and vascular network to behavior. Recordings from the brain revealed complex firing patterns arising both spontaneously and in response to stimulation. Neural activity increases as the brain matures and declines thereafter. Motor behavior follows the identical time course. The behavior of each zooid is guided predominantly by its individual brain, but sister zooids can also exhibit synchronous motor behavior. The vascular network also generates action potentials that are largely independent of neural activity. In addition, the entire vascular network undergoes slow rhythmic contractions that appear to arise from processes endogenous to vascular epithelial cells. We found that neurons in the brain and cells of the vascular network both express multiple genes for voltage-gated Na+ and Ca2+ ion channels homologous (based on sequence) to mammalian ion channel genes.


Assuntos
Urocordados , Humanos , Animais , Urocordados/fisiologia , Envelhecimento , Encéfalo , Mamíferos
5.
Proc Natl Acad Sci U S A ; 119(29): e2203032119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858312

RESUMO

Colonial tunicates are marine organisms that possess multiple brains simultaneously during their colonial phase. While the cyclical processes of neurogenesis and neurodegeneration characterizing their life cycle have been documented previously, the cellular and molecular changes associated with such processes and their relationship with variation in brain morphology and individual (zooid) behavior throughout adult life remains unknown. Here, we introduce Botryllus schlosseri as an invertebrate model for neurogenesis, neural degeneration, and evolutionary neuroscience. Our analysis reveals that during the weekly colony budding (i.e., asexual reproduction), prior to programmed cell death and removal by phagocytes, decreases in the number of neurons in the adult brain are associated with reduced behavioral response and significant change in the expression of 73 mammalian homologous genes associated with neurodegenerative disease. Similarly, when comparing young colonies (1 to 2 y of age) to those reared in a laboratory for ∼20 y, we found that older colonies contained significantly fewer neurons and exhibited reduced behavioral response alongside changes in the expression of 148 such genes (35 of which were differentially expressed across both timescales). The existence of two distinct yet apparently related neurodegenerative pathways represents a novel platform to study the gene products governing the relationship between aging, neural regeneration and degeneration, and loss of nervous system function. Indeed, as a member of an evolutionary clade considered to be a sister group of vertebrates, this organism may be a fundamental resource in understanding how evolution has shaped these processes across phylogeny and obtaining mechanistic insight.


Assuntos
Evolução Biológica , Doenças Neurodegenerativas , Urocordados , Animais , Expressão Gênica , Doenças Neurodegenerativas/genética , Reprodução Assexuada , Urocordados/genética
6.
Mar Drugs ; 19(8)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34436293

RESUMO

Understanding the mechanisms that sustain immunological nonreactivity is essential for maintaining tissue in syngeneic and allogeneic settings, such as transplantation and pregnancy tolerance. While most transplantation rejections occur due to the adaptive immune response, the proinflammatory response of innate immunity is necessary for the activation of adaptive immunity. Botryllus schlosseri, a colonial tunicate, which is the nearest invertebrate group to the vertebrates, is devoid of T- and B-cell-based adaptive immunity. It has unique characteristics that make it a valuable model system for studying innate immunity mechanisms: (i) a natural allogeneic transplantation phenomenon that results in either fusion or rejection; (ii) whole animal regeneration and noninflammatory resorption on a weekly basis; (iii) allogeneic resorption which is comparable to human chronic rejection. Recent studies in B. schlosseri have led to the recognition of a molecular and cellular framework underlying the innate immunity loss of tolerance to allogeneic tissues. Additionally, B. schlosseri was developed as a model for studying hematopoietic stem cell (HSC) transplantation, and it provides further insights into the similarities between the HSC niches of human and B. schlosseri. In this review, we discuss why studying the molecular and cellular pathways that direct successful innate immune tolerance in B. schlosseri can provide novel insights into and potential modulations of these immune processes in humans.


Assuntos
Cordados/imunologia , Imunidade Inata , Modelos Biológicos , Transplante de Células-Tronco , Animais , Organismos Aquáticos , Humanos
7.
Front Immunol ; 12: 688106, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276677

RESUMO

The scopes related to the interplay between stem cells and the immune system are broad and range from the basic understanding of organism's physiology and ecology to translational studies, further contributing to (eco)toxicology, biotechnology, and medicine as well as regulatory and ethical aspects. Stem cells originate immune cells through hematopoiesis, and the interplay between the two cell types is required in processes like regeneration. In addition, stem and immune cell anomalies directly affect the organism's functions, its ability to cope with environmental changes and, indirectly, its role in ecosystem services. However, stem cells and immune cells continue to be considered parts of two branches of biological research with few interconnections between them. This review aims to bridge these two seemingly disparate disciplines towards much more integrative and transformative approaches with examples deriving mainly from aquatic invertebrates. We discuss the current understanding of cross-disciplinary collaborative and emerging issues, raising novel hypotheses and comments. We also discuss the problems and perspectives of the two disciplines and how to integrate their conceptual frameworks to address basic equations in biology in a new, innovative way.


Assuntos
Organismos Aquáticos/imunologia , Sistema Imunitário/imunologia , Imunidade Inata , Células-Tronco/imunologia , Biologia de Sistemas , Alergia e Imunologia , Organismos Aquáticos/citologia , Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Comunicação Celular , Genômica , Sistema Imunitário/citologia , Sistema Imunitário/metabolismo , Biologia Marinha , Transdução de Sinais , Células-Tronco/metabolismo
8.
Cell Rep ; 34(4): 108681, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33503429

RESUMO

Colonial tunicates are the only chordate that possess two distinct developmental pathways to produce an adult body: either sexually through embryogenesis or asexually through a stem cell-mediated renewal termed blastogenesis. Using the colonial tunicate Botryllus schlosseri, we combine transcriptomics and microscopy to build an atlas of the molecular and morphological signatures at each developmental stage for both pathways. The general molecular profiles of these processes are largely distinct. However, the relative timing of organogenesis and ordering of tissue-specific gene expression are conserved. By comparing the developmental pathways of B. schlosseri with other chordates, we identify hundreds of putative transcription factors with conserved temporal expression. Our findings demonstrate that convergent morphology need not imply convergent molecular mechanisms but that it showcases the importance that tissue-specific stem cells and transcription factors play in producing the same mature body through different pathways.


Assuntos
Desenvolvimento Embrionário/genética , Reprodução Assexuada/genética , Desenvolvimento Sexual/genética , Urocordados/genética , Animais
9.
Curr Opin Immunol ; 62: 91-98, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31954962

RESUMO

Evolution and selection have shaped diverse immune systems throughout phylogeny, the vast majority of which remain unexplored. Botryllus schlosseri is a colonial tunicate, a sister group to vertebrates, that develops as a chordate, then metamorphoses to an asexually reproductive invertebrate that every week makes the same body plan from budded stem cells. Genetically distinct B. schlosseri colonies can fuse to form a chimera, or reject each other based on allogeneic recognition. In chimeras, circulating germline and somatic stem cells participate in development; stem cells compete in all individuals in the fused colonies, with rejection preventing germline parasitism. Here we review the isolation and characterization of B. schlosseri hematopoietic stem cells (HSC) and their niches, and the role of the immune effector cells in allorecognition.


Assuntos
Hematopoiese Clonal/imunologia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/imunologia , Urocordados/imunologia , Animais , Filogenia , Condicionamento Pré-Transplante , Urocordados/genética
10.
Dev Biol ; 448(2): 293-308, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30217596

RESUMO

In the second half of the eighteenth century, Schlosser and Ellis described the colonial ascidian Botryllus schlosseri garnering the interest of scientists around the world. In the 1950's scientists began to study B. schlosseri and soon recognized it as an important model organism for the study of developmental biology and comparative immunology. In this review, we summarize the history of B. schlosseri studies and experiments performed to characterize the colony life cycle and bud development. We describe experiments performed to analyze variations in bud productivity, zooid growth and bilateral asymmetry (i.e., the situs viscerum), and discuss zooid and bud removal experiments that were used to study the cross-talk between consecutive blastogenetic generations and vascular budding. We also summarize experiments that demonstrated that the ability of two distinct colonies to fuse or reject is controlled by a single polymorphic gene locus (BHF) with multiple, codominantly expressed alleles. Finally, we describe how the ability to fuse and create chimeras was used to show that within a chimera somatic and germline stem cells compete to populate niches and regenerate tissue or germline organs. Starting from the results of these 60 years of study, we can now use new technological advances to expand the study of B. schlosseri traits and understand functional relationships between its genome and life history phenotypes.


Assuntos
Estágios do Ciclo de Vida , Pesquisa , Urocordados/embriologia , Animais , Regeneração , Reprodução , Células-Tronco/citologia , Urocordados/anatomia & histologia , Urocordados/genética
11.
Nature ; 564(7736): 425-429, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30518860

RESUMO

Haematopoiesis is an essential process that evolved in multicellular animals. At the heart of this process are haematopoietic stem cells (HSCs), which are multipotent and self-renewing, and generate the entire repertoire of blood and immune cells throughout an animal's life1. Although there have been comprehensive studies on self-renewal, differentiation, physiological regulation and niche occupation in vertebrate HSCs, relatively little is known about the evolutionary origin and niches of these cells. Here we describe the haematopoietic system of Botryllus schlosseri, a colonial tunicate that has a vasculature and circulating blood cells, and interesting stem-cell biology and immunity characteristics2-8. Self-recognition between genetically compatible B. schlosseri colonies leads to the formation of natural parabionts with shared circulation, whereas incompatible colonies reject each other3,4,7. Using flow cytometry, whole-transcriptome sequencing of defined cell populations and diverse functional assays, we identify HSCs, progenitors, immune effector cells and an HSC niche, and demonstrate that self-recognition inhibits allospecific cytotoxic reactions. Our results show that HSC and myeloid lineage immune cells emerged in a common ancestor of tunicates and vertebrates, and also suggest that haematopoietic bone marrow and the B. schlosseri endostyle niche evolved from a common origin.


Assuntos
Hematopoese , Sistema Hematopoético/citologia , Mamíferos/sangue , Filogenia , Urocordados/citologia , Animais , Diferenciação Celular , Linhagem da Célula , Citotoxicidade Imunológica , Feminino , Citometria de Fluxo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Imunidade Celular , Isoantígenos/imunologia , Masculino , Mamíferos/anatomia & histologia , Células Mieloides/citologia , Células Mieloides/imunologia , Fagocitose/imunologia , Nicho de Células-Tronco , Transcriptoma/genética , Urocordados/anatomia & histologia , Urocordados/genética , Urocordados/imunologia
12.
Proc Natl Acad Sci U S A ; 113(23): 6520-5, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27217570

RESUMO

In a primitive chordate model of natural chimerism, one chimeric partner is often eliminated in a process of allogeneic resorption. Here, we identify the cellular framework underlying loss of tolerance to one partner within a natural Botryllus schlosseri chimera. We show that the principal cell type mediating chimeric partner elimination is a cytotoxic morula cell (MC). Proinflammatory, developmental cell death programs render MCs cytotoxic and, in collaboration with activated phagocytes, eliminate chimeric partners during the "takeover" phase of blastogenic development. Among these genes, the proinflammatory cytokine IL-17 enhances cytotoxicity in allorecognition assays. Cellular transfer of FACS-purified MCs from allogeneic donors into recipients shows that the resorption response can be adoptively acquired. Transfer of 1 × 10(5) allogeneic MCs eliminated 33 of 78 (42%) recipient primary buds and 20 of 76 (20.5%) adult parental adult organisms (zooids) by 14 d whereas transfer of allogeneic cell populations lacking MCs had only minimal effects on recipient colonies. Furthermore, reactivity of transferred cells coincided with the onset of developmental-regulated cell death programs and disproportionately affected developing tissues within a chimera. Among chimeric partner "losers," severe developmental defects were observed in asexually propagating tissues, reflecting a pathologic switch in gene expression in developmental programs. These studies provide evidence that elimination of one partner in a chimera is an immune cell-based rejection that operates within histocompatible pairs and that maximal allogeneic responses involve the coordination of both phagocytic programs and the "arming" of cytotoxic cells.


Assuntos
Mórula/citologia , Urocordados/imunologia , Animais , Sequência de Bases , Morte Celular , Mórula/transplante , Quimeras de Transplante , Urocordados/citologia , Urocordados/genética
13.
Mol Phylogenet Evol ; 95: 46-57, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26611831

RESUMO

Ambra1 is a positive regulator of autophagy, a lysosome-mediated degradative process involved both in physiological and pathological conditions. Nowadays, Ambra1 has been characterized only in mammals and zebrafish. Through bioinformatics searches and targeted cloning, we report the identification of the complete Ambra1 transcript in a non-vertebrate chordate, the tunicate Botryllus schlosseri. Tunicata is the sister group of Vertebrata and the only chordate group possessing species that reproduce also by blastogenesis (asexual reproduction). B. schlosseri Ambra1 deduced amino acid sequence is shorter than vertebrate homologues but still contains the typical WD40 domain. qPCR analyses revealed that the level of B. schlosseri Ambra1 transcription is temporally regulated along the colonial blastogenetic cycle. By means of similarity searches we identified Wdr5 and Katnb1 as proteins evolutionarily associated to Ambra1. Phylogenetic analyses on Bilateria indicate that: (i) Wdr5 is the most related to Ambra1, so that they may derive from an ancestral gene, (ii) Ambra1 forms a group of ancient genes evolved before the radiation of the taxon, (iii) these orthologous Ambra1 share the two conserved WD40/YVTN repeat-like-containing domains, and (iv) they are characterized by ancient duplications of WD40 repeats within the N-terminal domain.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Autofagia/genética , Reprodução Assexuada/genética , Urocordados/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Evolução Molecular , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos , Urocordados/classificação , Vertebrados/classificação , Vertebrados/genética
14.
Invertebr Reprod Dev ; 59(sup1): 33-38, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-26136618

RESUMO

The decline of tissue regenerative potential with the loss of stem cell function is a hallmark of mammalian aging. We study Botryllus schlosseri, a colonial chordate which exhibits robust stem cell-mediated regeneration capacities throughout life. Larvae, derived by sexual reproduction and chordate development, metamorphose to clonal founders that undergo weekly formation of new individuals by budding from stem cells. Individuals are transient structures which die through massive apoptosis, and successive buds mature to replicate an entire new body. As a result, their stem cells, which are the only self-renewing cells in a tissue, are the only cells which remain through the entire life of the genotype and retain the effects of time. During aging, a significant decrease in the colonies' regenerative potential is observed and both sexual and asexual reproductions will eventually halt. When a parent colony is experimentally separated into a number of clonal replicates, they frequently undergo senescence simultaneously, suggesting a heritable factor that determines lifespan in these colonies. The availability of the recently published B. schlosseri genome coupled with its unique life cycle features promotes the use of this model organism for the study of the evolution of aging, stem cells, and mechanisms of regeneration.

15.
Genesis ; 53(1): 1-14, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25220678

RESUMO

Tunicates are invertebrate members of the chordate phylum, and are considered to be the sister group of vertebrates. Tunicates are composed of ascidians, thaliaceans, and appendicularians. With the advent of inexpensive high-throughput sequencing, the number of sequenced tunicate genomes is expected to rise sharply within the coming years. To facilitate comparative genomics within the tunicates, and between tunicates and vertebrates, standardized rules for the nomenclature of tunicate genetic elements need to be established. Here we propose a set of nomenclature rules, consensual within the community, for predicted genes, pseudogenes, transcripts, operons, transcriptional cis-regulatory regions, transposable elements, and transgenic constructs. In addition, the document proposes guidelines for naming transgenic and mutant lines.


Assuntos
Elementos Antissenso (Genética) , Genoma , Urocordados/classificação , Urocordados/genética , Animais , Mapeamento Cromossômico , Homologia de Genes , Loci Gênicos , Genômica , Guias como Assunto , Filogenia , Terminologia como Assunto , Transcrição Gênica
16.
PLoS One ; 9(5): e96434, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24789338

RESUMO

Ontologies provide an important resource to integrate information. For developmental biology and comparative anatomy studies, ontologies of a species are used to formalize and annotate data that are related to anatomical structures, their lineage and timing of development. Here, we have constructed the first ontology for anatomy and asexual development (blastogenesis) of a bilaterian, the colonial tunicate Botryllus schlosseri. Tunicates, like Botryllus schlosseri, are non-vertebrates and the only chordate taxon species that reproduce both sexually and asexually. Their tadpole larval stage possesses structures characteristic of all chordates, i.e. a notochord, a dorsal neural tube, and gill slits. Larvae settle and metamorphose into individuals that are either solitary or colonial. The latter reproduce both sexually and asexually and these two reproductive modes lead to essentially the same adult body plan. The Botryllus schlosseri Ontology of Development and Anatomy (BODA) will facilitate the comparison between both types of development. BODA uses the rules defined by the Open Biomedical Ontologies Foundry. It is based on studies that investigate the anatomy, blastogenesis and regeneration of this organism. BODA features allow the users to easily search and identify anatomical structures in the colony, to define the developmental stage, and to follow the morphogenetic events of a tissue and/or organ of interest throughout asexual development. We invite the scientific community to use this resource as a reference for the anatomy and developmental ontology of B. schlosseri and encourage recommendations for updates and improvements.


Assuntos
Bases de Dados Genéticas , Urocordados/anatomia & histologia , Urocordados/embriologia , Animais , Ontologias Biológicas , Padronização Corporal , Software
17.
Genome Biol Evol ; 6(3): 591-605, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24572017

RESUMO

Ascidians are a fascinating group of filter-feeding marine chordates characterized by rapid evolution of both sequences and structure of their nuclear and mitochondrial genomes. Moreover, they include several model organisms used to investigate complex biological processes in chordates. To study the evolutionary dynamics of ascidians at short phylogenetic distances, we sequenced 13 new mitogenomes and analyzed them, together with 15 other available mitogenomes, using a novel approach involving detailed whole-mitogenome comparisons of conspecific and congeneric pairs. The evolutionary rate was quite homogeneous at both intraspecific and congeneric level, and the lowest congeneric rates were found in cryptic (morphologically undistinguishable) and in morphologically very similar species pairs. Moreover, congeneric nonsynonymous rates (dN) were up to two orders of magnitude higher than in intraspecies pairs. Overall, a clear-cut gap sets apart conspecific from congeneric pairs. These evolutionary peculiarities allowed easily identifying an extraordinary intraspecific variability in the model ascidian Botryllus schlosseri, where most pairs show a dN value between that observed at intraspecies and congeneric level, yet consistently lower than that of the Ciona intestinalis cryptic species pair. These data suggest ongoing speciation events producing genetically distinct B. schlosseri entities. Remarkably, these ongoing speciation events were undetectable by the cox1 barcode fragment, demonstrating that, at low phylogenetic distances, the whole mitogenome has a higher resolving power than cox1. Our study shows that whole-mitogenome comparative analyses, performed on a suitable sample of congeneric and intraspecies pairs, may allow detecting not only cryptic species but also ongoing speciation events.


Assuntos
Ciona intestinalis/classificação , Ciona intestinalis/genética , Evolução Molecular , Genoma Mitocondrial , Animais , DNA Mitocondrial/genética , Ordem dos Genes , Anotação de Sequência Molecular , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fases de Leitura Aberta/genética , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
18.
Elife ; 2: e00569, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23840927

RESUMO

Botryllus schlosseri is a colonial urochordate that follows the chordate plan of development following sexual reproduction, but invokes a stem cell-mediated budding program during subsequent rounds of asexual reproduction. As urochordates are considered to be the closest living invertebrate relatives of vertebrates, they are ideal subjects for whole genome sequence analyses. Using a novel method for high-throughput sequencing of eukaryotic genomes, we sequenced and assembled 580 Mbp of the B. schlosseri genome. The genome assembly is comprised of nearly 14,000 intron-containing predicted genes, and 13,500 intron-less predicted genes, 40% of which could be confidently parceled into 13 (of 16 haploid) chromosomes. A comparison of homologous genes between B. schlosseri and other diverse taxonomic groups revealed genomic events underlying the evolution of vertebrates and lymphoid-mediated immunity. The B. schlosseri genome is a community resource for studying alternative modes of reproduction, natural transplantation reactions, and stem cell-mediated regeneration. DOI:http://dx.doi.org/10.7554/eLife.00569.001.


Assuntos
Cordados/genética , Genoma , Animais , Cordados/classificação , Cordados/fisiologia , Mapeamento Cromossômico , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Reprodução
19.
Science ; 341(6144): 384-7, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23888037

RESUMO

Histocompatibility is the basis by which multicellular organisms of the same species distinguish self from nonself. Relatively little is known about the mechanisms underlying histocompatibility reactions in lower organisms. Botryllus schlosseri is a colonial urochordate, a sister group of vertebrates, that exhibits a genetically determined natural transplantation reaction, whereby self-recognition between colonies leads to formation of parabionts with a common vasculature, whereas rejection occurs between incompatible colonies. Using genetically defined lines, whole-transcriptome sequencing, and genomics, we identified a single gene that encodes self-nonself and determines "graft" outcomes in this organism. This gene is significantly up-regulated in colonies poised to undergo fusion and/or rejection, is highly expressed in the vasculature, and is functionally linked to histocompatibility outcomes. These findings establish a platform for advancing the science of allorecognition.


Assuntos
Genes , Histocompatibilidade/genética , Urocordados/genética , Urocordados/imunologia , Alelos , Animais , Genoma , Genótipo , Tolerância Imunológica , Dados de Sequência Molecular , Análise de Sequência de DNA , Transcriptoma , Regulação para Cima , Urocordados/fisiologia
20.
Dev Cell ; 24(1): 76-88, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23260626

RESUMO

The mechanisms that sustain stem cells are fundamental to tissue maintenance. Here, we identify "cell islands" (CIs) as a niche for putative germ and somatic stem cells in Botryllus schlosseri, a colonial chordate that undergoes weekly cycles of death and regeneration. Cells within CIs express markers associated with germ and somatic stem cells and gene products that implicate CIs as signaling centers for stem cells. Transplantation of CIs induced long-term germline and somatic chimerism, demonstrating self-renewal and pluripotency of CI cells. Cell labeling and in vivo time-lapse imaging of CI cells reveal waves of migrations from degrading CIs into developing buds, contributing to soma and germline development. Knockdown of cadherin, which is highly expressed within CIs, elicited the migration of CI cells to circulation. Piwi knockdown resulted in regeneration arrest. We suggest that repeated trafficking of stem cells allows them to escape constraints imposed by the niche, enabling self-preservation throughout life.


Assuntos
Células Germinativas/citologia , Regeneração/fisiologia , Nicho de Células-Tronco/fisiologia , Células-Tronco/citologia , Urocordados/citologia , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caderinas/genética , Caderinas/metabolismo , Células Cultivadas , Células Germinativas/fisiologia , Técnicas Imunoenzimáticas , Hibridização In Situ , Sondas RNA , Células-Tronco/fisiologia , Urocordados/genética , Urocordados/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...